- 1. Point-slope form is useful when the slope and the *y*-intercept are known. If you are given two points, calculate the slope and use one of the points and the slope-intercept form of the equation to solve for the *y*-intercept. If you are given the slope and a point that is not the *y*-intercept, use the point-slope form. Standard form can be used to write the equations of vertical and horizontal lines. To find the *x* or *y*-intercept of a line, use standard form. The slopes of lines determine whether the lines are parallel or perpendicular.
- 2. reciprocals
- **3.** standard form
- 4. parallel
- 5. slope-intercept form
- **6.** point-slope form
- **7**.

8.

- **9.** y = 3x 6
- **10.** $y = -\frac{5}{3}x + 6\frac{1}{3}$
- **11.** y = -50x + 900

12.
$$y + 2 = 0.5(x - 4)$$

13.
$$y-5=-3(x+2)$$

14.
$$y-1=\frac{3}{8}(x-3)$$

15.
$$y - 4 = -0.5(x - 1.5)$$

16.
$$y - 123.75 = -8.25(x - 5); $15$$

17.
$$3x + 5y = 15$$

18.
$$4x - y = 5$$

19.
$$5x + y = 23$$

22.
$$1.25x + 1.50y = 25$$

23.
$$-\frac{1}{3}$$

24.
$$y = -3x + 7$$

25.
$$y = \frac{1}{2}x + \frac{1}{2}$$

26.
$$y-7=-4(x-1)$$

27.
$$y-6=-2(x+2)$$