11. -3
12. about 2.76 miles; Explanations may vary. Sample: Parker ran 6 miles per hour for 27 minutes and 39 seconds. Use the distance formula to find the distance, but first convert his running time to hours. Multiply 39 seconds by $\frac{1 \mathrm{~min}}{60 \mathrm{~s}}$ to convert 39 seconds into 0.65 minutes. Then multiply the quantity $(27+0.65)$ by $\frac{1 \mathrm{hr}}{60 \mathrm{~min}}$ to convert 27.65 minutes to hours. Parker ran for about 0.46 hours. Now use the distance formula to find the number of miles he ran: $d \approx 6(0.46)=2.76$ miles. Parker ran about 2.76 miles.
13. Both; you can use the Division Property of Equality and divide both sides by $\frac{1}{2}$ (or multiply by 2). You can use the Distributive Property to simplify the left side of the equation, $\frac{1}{2}(2 y+4)$.
14. 5
15. 4
16. -7
17. 2
18. $\frac{31}{12}$, or $2 \frac{7}{12}$
19. $\frac{12}{5}$, or $2 \frac{2}{5}$
20. $-\frac{96}{25}$, or $-3 \frac{21}{25}$
21. 4,300
22. 3.6
23. -80
24. 2.5
25. about 18 bonus payments per year; The player is expected to make $\$ 1,000,000=6(\$ 20,000)+\$ 8000 b$, where b is the number of bonus payments made over 6 years; Solving gives $b=110$ payments. So, the player is expected to earn $\frac{110}{6} \approx 18$ bonus payments per year on average.
26. 13.75; Addition must be performed first, so she should place the sum $3+8$ in parentheses. She should enter the expression as $(3+8) \times 5 \div 4$.
27. B, D
28. Part A 18 rows of bricks

Part B $\quad 60 \frac{3}{8}$ in.

