Name _____

Date _____

Goals: a. To classify polynomials

b. To graph polynomial functions and describe end behavior

Warm Up: Rewrite each quadratic in standard form. What are the characteristics of standard form?

a. $9 - x^2$

b.	5 <i>x</i>	+	$4x^2$	-7

Classify by Degree			Classify by Number of Terms	
Degree	Name using Degree	Example	Number of Terms	Name Using Terms
0		-9	1	
1		<i>x</i> – 8	2	
2		$3x^2 + 6x - 1$	3	
3		$-3x^{3}$	1	
4		$x^4 - 9$	2	
5		$x^{5} + 4x^{3} - x^{2} - 6$	4	

Standard form of Polynomials

The **standard form of a polynomial function** arranges the terms by degree in descending numerical order.

A polynomial function P(x) in standard form is

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

where *n* is a nonnegative integer and a_n, \ldots, a_0 are real numbers.

Practice: Rewrite each polynomial in standard form. Classify each polynomial by degree and number of terms.

a. $\frac{2}{3}$ b. $3x + x^4 + 1$ c. $6 - x^3$ d. $4x^5 - 8x$

A#1

Turning Points and End Behavior of Polynomial Functions

Summarize: How do the *a* and the *n* of the ax^n term with the highest exponent determine graph behavior?

	<i>n</i> is even	<i>n</i> is odd
<i>a</i> > 0		
<i>a</i> < 0		

Practice: Consider the leading term of each polynomial function. What is the end behavior of the graph? Check using a graphing calculator.

a.
$$y = 3x^3 - 3x$$

b. $y = -2x^4 - 4x^3 - 8x^2 + 3$

Practice: Classify each polynomial by degree and by number of terms. Simplify first if necessary.

a.
$$4x^5 - 5x^2 + 3 - 2x^2$$
 b. $b(b-3)^2$

Practice: Determine the end behavior of the graph of each polynomial function.

a. $y = 3x^4 + 6x^3 - x^2 + 12$ **b.** $y = 50 - 3x^3 + 5x^2$ **c.** $y = -x + x^2 + 2$

d.
$$y = 4x^2 + 9 - 5x^4 - x^3$$
 e. $y = 12x^4 - x + 3x^7 - 1$ **f.** $y = 2x^5 + x^2 - 4$