Review: Use the product of conjugates to multiply. $(a-b)(a+b) = a^2 - b^2$

a.
$$(2-i)(2+i)$$

a.
$$(2-i)(2+i)$$
 b. $(4+2i)(4-2i)$ c. $(6-5i)(6+5i)$

c.
$$(6-5i)(6+5i)$$

Multiplying Complex Conjugates: When multiplying the conjugates of complex numbers, we can the *i* and the squares.

$$(a-bi)(a+bi) = a^2 + b^2$$

Practice: Simplify by using the rule above. You may show NO work if you prefer.

a.
$$(5+i)(5-i)$$

b.
$$(10+3i)(10-3i)$$

a.
$$(5+i)(5-i)$$
 b. $(10+3i)(10-3i)$ c. $(12-7i)(12+7i)$ d. $(8+9i)(8-9i)$

d.
$$(8+9i)(8-9i)$$

Dividing Complex Numbers

When dividing complex numbers, there cannot be complex numbers in the denominator. In order to simplify, we have to multiply the denominator by its ; this process is called ______

Examples: Perform the given operation. Leave all answers in standard form a+bi.

a.
$$\frac{4}{3+2i}$$

b.
$$\frac{6}{5-i}$$

Practice: Perform the given operation. Leave all answers in standard form a+bi.

1.
$$\frac{3}{1+i}$$

$$2. \frac{6}{2-3i}$$

3.
$$\frac{5}{2-i}$$

4-8c Complex Numbers C: Dividing

Examples: Perform the given operation. Leave all answers in standard form a+bi.

c.
$$\frac{3+2i}{2-i}$$

d.
$$\frac{6-4i}{1-i}$$

Practice: Perform the given operation. Leave all answers in standard form a+bi.

4.
$$\frac{3+3i}{4+i}$$

5.
$$\frac{1-2i}{3-5i}$$

6.
$$\frac{3-i}{2+i}$$

7.
$$\frac{1}{3-2i}+(4-i)$$
 8. $\frac{1}{3+5i}-(6-2i)$ 9. $\frac{4-i}{-1+5i}+\frac{1}{1+i}$

8.
$$\frac{1}{2+5i}$$
 - $(6-2i)$

9.
$$\frac{4-i}{-1+5i} + \frac{1}{1+i}$$